
AD-A279 645 ATIN AG _______

Ve4io 4.62AN

wznors:

National Institute of Standards and Technology
Galithersburg, Maryland

7 HQMN3 ORGANIATMO NUAMES AMN.DPWOR4

fujff~8 a1 igg!%t1 1;6 itandard s and Technology
Galthersburg, Maryland 20899
USA

W 5PNSOR1NWMONrTOR1NG AGENCY NAME(S) MND 10. SCW5CUNGMMiS'FoRJ
AaJokf Pogrwn aOffc AGENCY

The Pentago. Fki 30118
M W" DTIC 7 __ __

Approved for Public Release; .. distribution unlimited

I&~ fIhWnI 200

Host/Target: Sun SPARCclassic (under Solaris, Release 2.1)

94- 15744ilogo In
Ada prograumming lfinguage, Ada Compler Validation Summnary Report,EAAc

- b Val. Testing, Ada Val. Office, Ada Val. cl y

17.~~~~0 WUTI&SCRT UMIATION OF

UNCLASSF1ED LAWE UNCLASSIFED UNCLASSiFED
PMrsambd by AMS SiM.

V94- 5 25 -027

AVF Control Number: NIST94DDC500_4_1.11
DATE COMPLETED

BEFORE ON-SITE: 94-03-18
AFTER ON-SITE: 94-03-28
REVISIONS: 94-04-11

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 940325S1.11354
DDC-I

DACS Sun SPARC/Solaris Native Ada Compiler System, Version 4.6.2
Sun SPARCclassic => Sun SPARCclasric

Prepared By:
Software Standards Validation Group

Computer Systems Laboratory
National Institute of Standards and Technology

Building 225, Room A266
Gaithersburg, Maryland 20899U.S.A. _ _ _ _ _ _ _ _ _Acceslon

For

NTIS CRAMd
DTIC TAB
Unannounced 0
Justification

By
Distibution I

Availability Codes

Avail and I or
Dist Special

AVF Control Number: NIST94DDC500_4_1.11

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on March 25, 1994.

Compiler Name and Version: D&CS Sun SPARC/Solaris Native Ada Compiler
System, Version 4.6.2

Host Computer System: Sun SPARCclassic running under Solaria,
Release 2.1

Target Computer System: Sun SPARCclassic running under Solaria,
Release 2.1

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
940325SI.11354 is awarded to DDC-I. This certificate expires 2 years
after ANSI/MIL-STD-18153 is approved by ANSI.

This report has been reviewed and is approved.

a al ation c yAda Validation 'l•rat ty
Dr. David K. 3 fl Mr. L. Arnold Jolfnson
Chief, Information S stems Manager, Software Standards

Engineering Division (ISED) Validation Group
Computer Systems Laboratory (CSL)

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899
U.S.A.

SAda Yi .kion 0 an.izati~on Ada JoffPrice

DirerorComputer & Software David R. Basel
Engineering Division Deputy Director,

Institute for Defense Analyses Ada Joint Program Office
Alexandria VA 22311 Defense Information Systems Agency,

Center for Information Management
Washington DC 20301

U.S.A.

NIST94DDC500_4 1.11

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

Customer: DDC-I

Certificate Awardee: DDC-I

Ada Validation Facility: National Institute of Standards and
Technology

Computer Systems Laboratory (CSL)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899
U.S.A.

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS Sun SPARC/Solaris Native Ada Compiler System,

Version 4.6.2

Host Computer System: Sun SPARCclassic running under Solaris, Release 2.1

Target Computer System: Sun SPARCclassic running under Solaris, Release 2.1

Declaration:

I the undersigned, declare that I have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed
above.

Custod~x Signature Date
Company DDC-I
Title

Cefi;)cate "Awaxdee Signature Date
Company DDC-I
Title

TABLE OF CONTENTS
CHAPTER 1 -

INTRODUCTION.............oooooeo .. o••• •-1-1

1. 1 USE OF THIS VALIDATION SUMMARY REPORT 1-11:2 REFERENCES o............o........ 1-2
1.3 ACVC TEST CLASSES 1-2
1 .4 DEFINITION OF TERMS 1-3

IMPLEMENTATION DEPENDENCIES. o 2-1
2.1 WITHDRAWN TESTS...........2-

2 .2 INAPPLICABLE TESTS 2-1
2 . 3 TEST MODIFICATIONSo.. 2-3

CHAPTER 3 .. 3-1
PROCESSING INFORMATION 3-13.•1 TESTING ENVIRONMENT oee*3-1

3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A... A-
MACRO PARAMETERS.....................A-1

MACR PA AME ER~ ooooeoooooesoooeoeeoeoeemoeeeeooeooooeooAo

APPENDIX B .. Bol
COMPILATION SYSTEM OPTIONS B-
LINKER OPTIONSF THE A CB-2

APPENDIX C o..o......*eooeoo*o*ow*C-I
APPENDIX F OF THE Ada STANDARD o.......oC-I

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures (Pro92] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro92]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
U.S.A.

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria, Virginia 22311-1772
U.S.A,

1-1

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Proarammina Lanauage,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89] Ada Compiler Validation Cababilitv User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is
compiled and the resulting compilation listing is examined to
verify that all violations of the Ada Standard are detected. Some
of the class B tests contain legal Ada code which must not be
flagged illegal by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values--for example, the

1-2

largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by
the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and [UGS9]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that
have to be added to a given host and target
computer system to allow transformation of
Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of
Capability (ACVC) the test suite, the support programs, the

ACVC Capability User's Guide and the
template for the validation summary (ACVC)
report.

Ada Implementation An Ada compiler with its host computer
system and its target computer system.

Ada Joint Program The part of the certification body which
Office (AJPO) provides policy and guidance for the Ada

certification Office system.

Ada Validation The part of the certification body which
Facility (AVF) carries out the procedures required to

establish the compliance of an Ada
implementation.

Ada Validation The part of the certification body that
Organization (AVO) provides technical guidance for operations

of the Ada certification system.

Compliance of an The ability of the implementation to pass an
Ada Implementation ACVC version.

1-3

Computer System A functional unit, consisting of one or more
computers and associated software, that uses
common storage for all or part of a program
and also for all or part of the data
necessary for the execution of the program;
executes user- written or user-designated
programs; performs user-designated data
manipulation, including arithmetic
operations and logic operations; and that
can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity ?ulfillment by a product, process, or
service of all requirements specified.

Customer An individual or corporate entity who enters
into an agreement with an AVF which
specifies the terms and conditions for AVF
services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring
Conformance that conformity is realized or attainable on

the Ada implementation for which validation
status is realized.

Host Computer A computer system where Ada source programs
System are transformed into executable form.
Inapplicable Test A test that contains one or more test

objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for
Standardization.

LRM The Ada standard, or Language Reference
Manual, published as ANSI/MIL-STD-1815A
-1983 and ISO 8652-1987. Citations from the
LRM take the form "<section>. <subsection>:
<paragraph>."

Operating System Software that controls the execution of
programs and that provides services such as
resource allocation, scheduling,
input/output control, and data management.
Usually, operating systems are predominantly
software, but partial or complete hardware
implementations are possible.

Target Computer A computer system where the executable form
System of Ada programs are executed.

1-4

Validated Ada The compiler of a validated Ada
Compiler implementation.

Validated Ada An Ada implementation that has been
Implementation validated successfully either by AVF testing

or by registration [Pro92].
Validation The process of checking the conformity of an

Ada compiler to the Ada programming language
and of issuing a certificate for this
implementation.

Withdrawn Test A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective,
fails to meet its test objective, or
contains erroneous or illegal use of the Ada
programming language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 104 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 93-11-22.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C35508I C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55BO6A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C86001F C94021A
C97116A C98003B BA2011A CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BD1B02B BD1BO6A
AD1B08A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B15C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD5111A CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE2107I CE2117A CE2117B
CE2119B CE2205B CE2405A CE3111C CE3116A CE3118A
CE3411B CE3412B CE3607B CE3607C CE3607D CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Commentaries and commonly referenced in
the format AI-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)

2-1

C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C241131..K (3 tests) use a line length in the input file which
exceeds 126 characters.

The following 20 tests check for the predefined type LONGINTEGER;
for this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD710IG check for a
predefined integer type with a name other than INTEGER,
LONGINTEGER, or SHORTINTEGER; for this implementation, there is
no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT; for this implementation, there is no such type.

C35713D and B8600lZ check for a predefined floating-point type with
a name other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater; for
this implementation, MAXMANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results
of various floating-point operations lie outside the range of the
base type; for this implementation, MACHINEOVERFLOWS is TRUE.

C4AO13B contains a static universal real expression that exceeds
the range of this implementation's largest floating-point type;
this expression is rejected by the compiler.

B86001Y uses the name of a predefined fixed-point type other than
type DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside
the range of type DURATION; for this implementation, the ranges are
the same.

CA2009C and CA2009F check whether a generic unit can be

2-2

instantiated before its body (and any of its subunits) is compiled;
this implementation creates a dependence on generic units as
allowed by AI-00408 and AI-00506 such that the compilation of the
Vsneric unit bodies makes the instantiating units obsolete. (See
section 2.3.)

CD1009C checks whether a length clause can specify a non-default
size for a floating-point type; this implementation does not
support such sizes.

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
implementation does not support such sizes.

The 18 tests listed in the following table check that USE ERROR is
raised if the given file operations are not su~pported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102E CREATE OUTFILE SEQUENTIAL_10
CE2102F CREATE INOUTFILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT IO
CE2102N OPEN INFILE SEQUENTIAL_10
CE2 1020 RESET IN_ FILE SEQUENTIALIO
CE2102P OPEN OUT FILE SEQUENTIAL_10
CE2102Q RESET OUT FILE SEQUENTIAL_IO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT IO
CE2102U RESET IN FILE DIRECT-I0
CE2102V OPEN OUT FILE DIRECT0IO
CE2102W RESET OUTFILE DIRECT IO
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT IO
CE31021 CREATE OUT FILE TEXT IO
CE3102J OPEN IN FILE TEXT IO
CE3102K OPEN OUTFILE TEXTIO

The 3 tests listed in the following table check the given file
operations for the given combination of mode and access method;
this implementation does not support these operations.

Test File Operation Mode File Access Method

CE2105A CREATE IN FILE SEQUENTIAL 10
CE2105B CREATE IN FILE DIRECT 10
CE3109A CREATE INFILE TEXTI1

CE2203A checks that WRITE raises USEERROR if the capacity of an

2-3

9

external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; -this implementation cannot
restrict file capacity.

CR3111B and CE3115A associate multiple internal text files with the
same external file and attempt to read from one file what was
written to the other, which is assumed to be immediately available;
this implementation buffers output. (Sea section 2.3.)

C23304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify--an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CR3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for thrs implementation, the value
of COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 69 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in
the way expected by the original tests.

822003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55A01A B61001C 861001F B61001H B61001I B61001M
B61001R B61001W B67001H B83A07A B83A07B B83A07C B83E01C.
B83E01D B83EZ1E B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B91002I
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1001A BA1101B BCI109A BC1109C
BC1109D BC1202A BC1202F BC1202G BE2210A BE2413A

CD2A83A was graded passed by Test Modification as directed by the
AVO. This test uses a length clause to specify the collection size
for an access type whose designated type is STRING; eight
designated objects are allocated, with a combined length of 30
characters. Because of this implementation's heap-management
strategy and alignment requirements, the collection size at line 22
had to be increased to 812.

CA2009C and CA2009F were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that
unit's body; as allowed by AI-00408 and AI-00506, the compilation

2-4

of the generic unit bodies makes the compilation unit that contains
the instantiations obsolete.

DC3204C and BC3205D were graded passed by Processing Modification
as directed by the AVO. These tests check that instantiations of
generic units with unconstrained types as generic actual parameters
are illegal if the generic bodies contain uses of the types that
require a constraint. However, the generic bodies are compiled
after the units that contain the instantiations, and this
implementation creates a dependence of the instantiating units on
the generic units as allowed by AI-00408 and AX-00506 such that the
compilation of the generic bodies makes the instantiating units
obsolete--no errors are detected. The processing of these tests
was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CR3111B and CE3115A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests assume that output
from one internal file is unbuffered and may be immediately read by
another file that shares the same external file. This
implementation raises ENDERROR on the attempts to read at lines 87
and 101, respectively.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial pages
of this report.

For technical information about this Ada implementation, contact:

Forrest Holemon
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefaxi 602-275-7502

For sales information about this Ada implementation, contact:

Mike Halpin
410 North 44th Street, Suite 320
Phoenix, Arizona 85008 (U.S.A.)

Telephone: 602-275-7172
Telefax: 602-275-7502

Testing of this Ada implementation was conducted at the customer's
site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro92].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were
withdrawn because of test errors (item b; see section 2.1), those
that require a floating-point precision that exceeds the
implementation's maximum precision (item e; see section 2.2), and
those that depend on the support of a file system--if none is
supported (item d). All tests passed, except those that are listed
in sections 2.1 and 2.2 (counted in items b and f, below).

3-1

* a) Total Number of Applicable Tests 3783

b) Total Number of Withdrawn Tests 104
c) Processed Inapplicable Tests 283
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 283 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The
contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled, linked, and executed on the host/target
computer system. The results were captured on the host/target
computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this test
were:

-list

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3-2

5 ADA COMPILER

The Ada Compiler compiles all program units within the specified source mfie and inserts the
geuW -We objects into the curorn pr n librury. Compiler opions are provided to alow the
wser conto of opdtimi n-tme checks, and compiler input and output options such as list
fle configuration files, and the ppam library used.

The In4ut to the compiler condi of the source file, the configuration file (which controls the
format of the list file), and the compiler options. Section 5.1 provides a list of all compiler
options, and Section 5.2 describes the source and configuration files.

Output consists of an object placed in the program lnay, diagnostic meages, and optional
listings. The configuration file and the compiler options specify the format and contents of the
list information. Output is described in Section 5.3.

"if any diagnostic messages are produced during the compilation, they are output in the diagnostic
file and on the curent output file. The diagnostic file and the diagnostic message format are
described in Section 5.3.2.

1U compiler uses a program library during the compilation. The compilation unit may refer to
units from the program library, and an intenal representation of the compilation unit will be
included in the program library as a result of a successful compilation. The program library is
described in Ompter 3. Section 5.4 briefly describes how the Ada compiler uses the library.

5.1 Invocation Command

Invoke the Ada compiler with the following command:

ada (<opdon>) owurce-or-unit-name> {source-or-unht-name>}

39

DACS Sun SPARC/SunOS and Sun SPARCVSolaris Native Ada Compiler System. User's Guide
Ada Compiler

L1.1 SmEmmary OpOM

ibis sction prsents a summary of options supported by the compile.

OPTIONS DESCRIPTION REFlRENCE

-m latm Small local subpograms are aumatically 5.1.2
ini expapded.

-bsf Compile body unit from source saved in library. 5.1.3

4oadueck 4kyword$ Suppress Seauton of run-m comtraLi checks•. 5.1.4

-demf o.ada <fek-ma Specifies the Me used by the compiler. 5.1.5

-ddbu Specifies tha information for the DDC-I 5.1.6
Symbolic Ada Debugger is ID be generated.

-Eary cflle-ma • Specifies the progran library to be used. 5.1.7

419 Creates a source list file. 5.1.8

-=@ chimn e Generates a machine code dump for the compilation. 5.1.9

-oaplmie <keyward>{,keyqwr•)Specifies compilr optimizations. 5.1.10

-Pwie Specifies tht code for profiling is to be generated. 5.1.11

-Fre" Displays compiler progress. 5.1.12

-fmaVe source The source is not saved in the program library. 5.1.13

-spdflcatm Compile specification unit from source saved
in library. 5.1.14

-wanrop Suppress warnings from the compiler. 5.1.15

-ref' Creates a cross reference listing. 5.1.16

$ ado -list tstppog

This example compiles the source file testprog and generates a fist file with the name testproglis.

$ ada -IUb x.Lbzaozy test

Ilbis example compiles the source Mfle test into the library myJibrary.

40

* DACS Sui SPARCiSunOS and Sunt SPARCISolaris Native Ada Compiler System. User's Guide
Ada Compiler

Defailt vahmt exist for options as hidiceaed in the folowing sections. Option names may be
albeviated (characters omitted Oftm the righ) as long as no ambiguity amoem

&.1.2 AUTOJNMINE

Syntax:

This optio specitles whether local su%=pVpus should be inin expanded. 1Uheinline; expansion
only occurs if fth ssbprogrun contains non more than 3 object declarations (and non other
declarations), no more than 5 statements and non exception handler and if the subprogram fulffills
the requirements defined for pragmia inlne A warning is issued when automatic Inine expansion
is perfomed.

5.1.3 BODY

Syntax:

When using the optio -body the Ada compiler will recompile the body of the unit specified as
parameter to the Ada compiler (see section 5.1.17) into, the current sublibrary. The source code
saved in the program library at the previous compilation of the body is used as the source code
to be compiled. If no source code is present or the body for the unit does not exist in the library,
an error message. is issued. This option is primarily for use by the Ada Recompiler (see chapter
7).

M.A NOCHECK

Syntax:

-nocheck <kyordb(#<keyword>)

By default, all ntm-time checks listed below will be generated by the compiler. The foMowing
explicit checks can be suppressed

ALL Suppress all checks.

ENDEX Index check

ACCESS Check for access values being non NULL.

DISCREMINANT Chiecks for discriminated fields.

LENGTH Amy lengt check.

41

DACS Sun SPARCJSuuOS mad Sun SPARCYa s Native Ada Compiler System. Uers Guide
Ada Compiler

RANGE Checks for values being in range.

OVERFLOW Explicit overflow dhecks.

ELABORATION Checks for subprgraus being elaborted.

STORAGE aaechu for sufficient storage available.

Note that the Divisio.Lcheck supressio mentioned in ARM 11.7 is not implemented.

5.15 CONFIGURATIONFILE

Syntax:

-minlm nthn dkam,,

This option specifies the configuratio file to be used by the compiler. The configurion file
allows the user to format compiler listings, set error limits, etc. If the option is omitted the

n Me designated by the name c.,fig is used by defaulL Section 5.22. contains a
desipton of the configuration file.

S.1. DEBUG

Sylax:

Generate debug information for the compilation &id store the information in the program library.
This is necessary if the unit is to be debugged with the DDC-I Ada Symbolic Cross Debugger.
Note that the program must also be linked with the -debug option, if the program is to be
debugged with the DDC-! Ada Symbolic Cross Debugger. See Section 6.3.3.1. Plesse note tha
no extra information is included in the code or data generated.

U.1.7 LIBRARY

Syntax:

-iWary n1brary-name>

This option specifies the current sublibrary that will be used in the compilation and will receive
the object when the compilation is complete. By specifying a current sublibrary, the current
program library (curremnt sublibrary and ancestors up to root) is also implicitly specified.

42

DACS Son SPARCISun0S and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Ada Compiler

If this option is omitted. the sublibrary designated by the environment variable name
ADA LIBRARY is used as the cunent sublibraIy. Section 5.4 describes how the Ada compiler
uses ite libray.

5.I. LIST

Syntax:

419

-1t specifies that a source lising will be produced. The source listing is written on the list file,
which has the name of the source file with the extension .it Section 5.3.1.1 contains a
description of the source listing.

M.9 MACJUNE CODE

Syntax:

-mehne code

Dump a machine code list of the compiled code at standard outpuL The instructions are dumped
symbolically, but addresses are noL Calls are described by a "patch", which consists of a unit
number and an entry number. The unit number is a unique number defining the library unit and
the entry number is the number of the subprogram within that unit.

5.1.10 OPTIMIZE

Syntax:

-epnlize -dkeyword(,Akeyword>)

This option specifies which optimizations will be perfonmed during code generation. Default is
no optimizations.

Selection of optimizations can be done in two basic ways.

I) Selecting individual optimizations.

2) Selecting predefined classes of optimizations.

43

DACS Sun SPARC/SunOS and Sun S'IARCYSolaris Native Ada Compiler System, User's Guide
Ada Compiler

(NOILOOP..REGISTERS[=<number-of-iterations>]
Controls the extent to which registers awe allocated to variables in loops,
purticulary inner loops.

It is possible to specify an optimization level, where the level specifies the
number of times the optimizer sdall loop through the code. If no level is
specified only one loop will be performed.

[NO]COMMONSUBEXPRESSION.ELIMINATION[w<Iumber-of-ieWrations>]
Specify to which extent common subexpression elimination should be
performed.

It is possible to specify an optimization level, where the level specifies the
number of times the optimizer shll loop through the code. If no level is
specified only one loop will be performed.

[NOJCOPYPROPAGATION[(=nmnber-of-iterations>]
Specify to which extent copy propagation should be performed.

It is possible to specify an optimization level, where the level specifies the
number of times the optimizer shall loop through the code. If no level is
specified only one loop will be performed.

[NOICONSTANT_FOLDING
Controls whether arithmetic expressions which have become static due to
other optimizations are calculated at compile time and folded into the code.

[NOILOOPUNROLLING
Performs unrolling of static loops into sequential code. The algorithm for
deciding whether a loop is a candidate for unrolling is given in the
Reference Manual.

[NOJLOOPJINVARIANTCODE vMOTION
Controls the movement of invariant code outside of loops.

[NOIDEADCODE_REMOVAL[=<number-of-iterations>]
Controls whether dead code should be removed or not. Dead code can
occur when conditions become static or when a variable is not used
anymore. Please note that this optimization can be a very time consuming.

It is possible to specify an optimization level, where the level specifies the
number of times the optimizer shall loop through the code. If no level is
specified only one loop will be performed.

The following options select a predefined level of optimizations:

LOW - Selects a predefined set of optimizations equal to the following list:

LOOP-REGSTERS, COMMONSUBEXPR,
COPYPROPAGATION, CONSTANT_FOLDING,
NODEADCODEREMOVAL, LOOP-UNROLLING,
LOOPINVARIANTCODE_MOTION

44

DACS Sun SPARC/SunOS and Sun SPARCISoiais Native Ada Compiler System, User's Guide
Ada Compiler

MEDIUM Selects a predefined set of optimizations equal to the following list:

,OOPP_REGlIS RS=25, COMMONSUBEXPR=25,
COPY_PROPAGATION=25, CONSTANT_FOLDING,
DEADCODE_REMOVAL, LOOPUNROLLING,
LOOPJNVARIANT_CODE_MOTION

HIGH Selects a predefined set of optimizations equal to the following list:

LOOPREGISTERS= 1000, COMMONSUBEXPI=l000.
COPYPROPAGATION= 1000, CONSTANTfOLDING,
DEADCODE_REMOVAL=f1000, LOOP_UNROLIJNG,
LOOP_INVARIANT_CODE_MOTION

ALL Equivalent to HIGH

Example:

$ ada -optimize all example.

Both of these commands compile the program with all the optimizations active at their highest
levels.

$ ada -opt low, loop re•1000, noloop unroll) example_2

This command compile the program with low optimizationsbut no loop.unrolling is wanted and
registers should be used to the greatest extent possible in loops.

5.1.11 PROFILE

Syntax:

.proffle

This option specifies that code for profiling shall be generated. This option in conjunction with
the linker option profile enables profiling of an executable program.

5.1.12 PROGRESS

Syntax:

-Provress

When this option is given, the compiler will output data about which pass the compiler is
curiently nmning.

45

* DACS Sun SPARC/SunOS and Sun SPARC/Solans Native Ada Compiler System, User's Guide
Ada Compiler

5.1.13 NOSAVESOURCE

Syntax:

-am"m ource

When -umave source is specified, source code will not be retained in the program library, this
save some space in the sublibrary. The default ia to save a copy of the compiled source code in
the pogran library. Hereby the user is always certain of what version of the source code
compiled. The source code may be displayed from the sublibrary with the PLU Type command.
Using -maove mource will help keeping library sizes smaller, but it will not be possible to use
the recompiler or the symbolic Ada Debugger.

5.1.14 SPECIFICATION

Syntax:

-qiedfladoti

When using the option -speifleatlon the Ada compiler will recompile the specification of the unit
specified as parameter to the Ada compiler (see section 5.1.17) into the current sublibrary. The
source code saved in the program library at the previous compilation of the specification is used
as the source code to be compiled. If no source code is present or the specification for the unit
does not exist in the library, an error message is issued. This option is primarily for use by the
Ada Recompiler (see chapter 7).

5.1.15 WARNINGS

Syntax:

-warnings

Suppress warnings from the compiler in the diagnostics file. All diagnostics will always come on
standard output, only the contents of the diagnostics file is affected by the warnings option. If a
compilation only generates warnings and the warnings option is specifies no diagnostics file is
created.

5.1.16 XREF

Syntax:

-Xref

A cross-reference listing can be requested by the user by means of the option -xref in conjunction
with option list. If the -xref option is given and no severe or fatal errs are found during the
compilation, the cross-refernce listing is written to the list file. The cross-reference listing is
described in Section 5.3.1.3.

46

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Ada Compiler

5.1.17 Source File Parameter

<source-or-unit-nane> (<source-or-unit-nazme>)

This parameter specifies either the text file containing the Ada source text to be compiled or,
when option -body -specifiation is used, the name of the unit to be compiled. When interpreted
as a file name, the file type ads is assumed by default. More than one file name can be
specified, each <source-file-name> can be a file name with wildcards as defined by the shell.

The compilation starts with the leftmost file name in the file name list, and ends with the
rightmost. If the list of file names includes a file name with wildcards, the files matching the
wildcard name are compiled in alphabetical order. If any file name occurs several times in the
list of file names, the file is compiled several times, i.e. one file is compiled as many times as
its name occurs in the list of file names.

The allowed format of the source text is described in Section 5.2.1.

5.2 Compiler Input

Input to the compiler consists of the command line options, a list of source text files and,
optionally, a configuration file.

5..1 Source Text

The user submits one file containing a source text in each compilation. The source text may
consist of one or more compilation units (see ARM Section 10.1).

The format of the source text must be in ISO-FORMAT ASCII. This format requires that the
source text is a sequence of ISO characters (ISO standard 646), where each line is terminated by
either one of the following termination sequences (CR means carriage return, VT means vertical
tabulation, LF means line feed, and FF means form feed):

1) A sequence of one or more CRs, where the sequence is neither immediately preceded nor
immnediately followed by any of the characters VT, LF, or FF.

2) Any of the characters VT, LF, or FF, immediately preceded and followed by a sequence
of zero or more CRs.

In general, ISO control characters are not permitted in the source text with the following

exceptions:

1) The horizontal tabulation (HM) character may be used as a separator between lexical units.

2) LF, VT, FF, and CR may be used to terminate lines, as described above.

47

*' . DACS Sun SPARC/SnOS and Sun SPARCASolans Native Ada Compiler System, User's Guide
Ada Compiler

MWh maximum number of characters in an input line is determined by the contents of the
configuration file (see Section 5.1.4). The control character CR, VT, LF, and FF are not
cmidered a pan of the line. Lines contsniif more than ft maximum number of characters are

unmcated mad an error message Is issued.

S.U cndkoerbo Fue

Cerlan processing charcteristics of the compiler, such as format of input and output, and error
limit, may be modified by the user. These c are passed to the compiler by means
of a configuration file, which is a standard UNIX text file. The contents of the configuration file
must be an Ada positional aggregate, written on one line, of the type
CONFIGURATIONRECORD, which is described below.

The configuration file "config" is not accepted by the compiler in the following cases:

1) The syntax does not conform with the syntax for positional Ada aggregates.

2) A value is outside the ranges specified.

3) A value is not specifl-A as a literal.

4) LINES_PERPAGE is not greater than TOPJMARGIN + BO'ITOMMARGIN.

5) The aggregate occupies more than one line.

If the compiler is unable to accept the configuration file, an error message is written on the
current output file and the compilation is terminated.

This is the record whose values must appear in aggregate form within the configuration file. The
record declaration makes use of some other types (given below) for the sake of clarity.

type CONFIGURATIONRECORD is
record

INFORMAT : INFORMATTING;
OUT FORMAT : OUTFORMATTING;
ERRORLIMIT : INTEGER;

end record;

type INPUTFORMATS is (ASCII);

type INFORMATTING is
record

INPUTFORMAT : INPUT FORMATS,
INPUT_LINELENGTH : INTEGER range 70..250;

end record;

type OUTFORMATTING is
record

LINES PER PAGE : INTEGER range 30..100;
TOP MARGIN : INTEGER range 4.. 90;
BOTTOM MARGIN : INTEGER range 0.. 90;

48

DACM Sun SPARCSANOS mld Sun SPARCfAOIA~s Native Ada Compiler System, User's Guide
Ada LUncr

Main Program Name
Ada Library
Linker Options

Linker Logical Names
Ada Linker Options
Target Linker Options
RTS Configuration Options

Shell Script Template

~1

r AftA LnkerI

Ada LibraryLog File

Shell Script
UCD Module in A.OUT Format
1 Object Module in A.OUT Format

RTS Object Library
Users Object Libraries

[Nat-ive Linker.1
An executable A.OUT Module

Figure 6-1
The Lnking Process

6.3 Invocaion Command

Enter the following command to invoke the linker:

ad (<optlo>n <unit-name>

The options and pammnters supported by the linker are descrbed in the following sections.

61

DACS Sun SPARC/Sun0S amd Sun SPARCSolars Native Ada Compiler System. User's Guide
Ada Linker

6.3.1 Parameter

<cmit-name>

Mlis parnetr is equired and indicates the main program. The <imit_name> must be a library
unit hin the cwrem program library, but not necessarily of the current sublibrary.

Note, dt a main program must be a procedure without parameters, and that <unit-name> is the
Identifier of the procedure, not a file specification. The main procedure is not checked for
parameters, but the execution of a program with a main procedure with parameters is undefined.

6.3.2 Snmmary of Options

This section briefly describes all options supported by the Ada linker.

OPTIONS DESCRIPTION REFERENCE

-debu Specify that the executable file is 6.3.3.1
to be used by the DDC-I Symbolic Ada
Debugger.

-nVeWceptlos No spellings of user ex(.t,,Aons will be 6.3.3.2
included in the executable file.

-eecutable <file-name> Specify the name of the executable file. 6.3.3.3

-keep Perform Ada link only, and keeps 6.3.3A
object files.

-ibrary dlbrary-name> Specify the library to be used in 6.3.3.5
the link.

-log 4ie-name> Specify creation of a log file. 6.3.3.6

-mai, stak size ,cnatural> Default stack size for main program. 6.3.3.7

-period ,duration> Timer resolution. 6.3.3.8

-priority <positive> Default task priority. 6.3.3.9

-profile Enable profiling of the executable program. 6.3.3.10

-selective Enables selective linking. 6.3.3.11

-statistics Display statistics. 6.3.3.12

.target options <strlng> Specify a string which is passed to 6.3.3.13
the template without interpretation.

62

DACS Sun SPARCI~unOS and Sun SPARCISolaris Native Ada Compiler System, User's Guide
Ada Linker

4aIk utackize cnatural> Default stack size for all tasks. 6.3.3.14

-tasks -cattural Maximum number of tasks. 6.3.3.15

-template file upLse• =me> Specify template file for the target link. 6.3.3.16

-mtIdUr Disable timer setup in the executable program. 6.3.3.17

-tnae slice <@dration> Task time slicing enabled and time slice value. 6.3.3.18

-tracebatcknode <keyword> Enable traceback when a program has 6.3.3.19
an unhandled exception.

-uwlibrary cllYe-name> Libraries or object modules to include in link. 6.3.3.20

-warnings Specify that warnings are displayed. 6.3.3.21

All options must be entered in lowercase, and may be abbreviated to the minimal unique substring
(e.g. "-d" is sufficient to denote "-debug").

6.3.3 Ada UAk Options

This section describes in detail all Ada link options, including default settings.

6.3.3.1 DEBUG

Syntax:

-debug

This option specifies that information for the DDC-l Symbolic Ada Debugger is to be generated.
Please note that no extra information is included in the code or data generated.

6.3.3.2 NOEXCEPTION TABLES

Syntax:

-menee-ions

This option specifies that no table containing the spellings of user-defined exceptions should be
included in the executable file. Without spellings for user-defined exceptions a stack trace for an
unhandled user-defined exception will appear with a reference to the unit number in which the
exception is defined and an exception number within the unit.

63

DACS Sun SPARCSMOS and Sun SPARCASoIads Native Ada Compiler System. User's Guide
Ada LUne

6333 EXECUTABLE FILENAME

Syntax:

-eutb Um

Specifies the name of the output module. Default is the name of the main program.

$ al p

- Links the subprogram P and stores the executable progamm in the Mfie p

$ al e my wm dir/amin p

- iAnks the subprogram P and stores the executable program in the Me main in the directory
my-exedir.

6.3.4 KEEP

Syntax:

This option controls whether or not the native link phase is executed, i.e., whether or not control
is passed to the flexible linker template Me, and the intermediate link files are preserved. The
option specifies to stop linking before the native link and keep the intermediate link files.

6.33.5 LIBRARY

Syntax:

-ibrary <ibrary-name>

This option defines the program libwary that contains the cunlt-name>. If <dibrary-name> is not
specified, the default library specified by the environment variable ADA LIBRARY will be
selected.

64

DACS Sun SPARCASunOS and Sim SPARCISolads Native Ada Compiler System, Usr's Guide
Ada Linker

6 LOG

Syntax:

-leg 4A A e,

The option seclifies If a ku file will be produced from the front end linker. As default. no log
file is poduced. The log file contains extensive information on the results of the link. The file
includes:

1) An elaborion order list with an entry for each unt included, showing the order in which

the wits will be elaborated.

2) All options and their actual values.

3) The full name of the progran librauy (the current subibrar and its ancestor sublibraries).

633.7 MAIN STACK SIZE

Syntax:

-mainastak- a <natural> (Default is 4096)

The main stack size option specifies the main program stack size N in 32 bit words. The range
of this pammeter is limited by physical memory size. The range of main sck size is from 0 to
2,147,483,647

Comdpranbl Data

The Ada linker generates th following data structures:

UCD$HP_StackSize L NZ Z

UCD$MPStack Lowest addrI

I of MP stack

UCD$MPStackStart Highest addr
of MP stack

65

DACS Sun SPARC/SunOS and Sun SPARCSmoaiis Native Ada Compiler System, User's Guide
Ada Linker

$ al -min 1024 p

- Lib* the pgrmn p with a stack of 4096 bytes.

6.332 PERIOD

Syntax:

-period cdsdmIl-mi' (Default is 0.05)

The period option specife the resoauion of calls to the Run-Time System routine RTS$M R.
The number specifies the number of seconds between two successive calls to RTSSTIMER. The
nun•ber must be within the range duration'snall to 2.0

Coauguabe Data

The Ada Linker generates the following 32 bit integer.

UCD$Timer F absolute integer

6JUS PRIORITY

Syntax:

-priority Ahteger> (Default is 16)

The priority option specifies the default priority N for task execution. The main program will nm
at this priority, as well as tasks which have had no priority level defined via pragma PRIORITY.
The range of priorities is from 1 to 32.

Configuramle Data

The Ada Linker generates the following constant data:

UCD$Priority LIN

66

DACS Sun SPARCISnOS and Sun SPARC/Salads Native Ada Compiler System, User's Guide
Ada Linker

Example:

$al -priority p

- Link the subprogram P which has the main program and tasks running at default priority
8.

6.33110 PROFILE

Syntax:

-Rvfe

This option specifies that the executable program shall allocate memory for profiling information
and be linked with a profiling library. The option is used together with the DDC-I Ada Profiler.
If problems with internupted system calls then link with option -moUmer (see Section 6.3.3.17).
Furthermam the profiler timer has a higher resolution than the Ada timer, which makes better
profile information. If the program use task do not link with option -notimer.

6.3-3.11 SELECTIVE LINKING

Syntax:

-selective

Specifies that only those subprograms from each compilation which are referred to from other
subprograms i.e. only those subprograms which actually are in the program are linked within the
program, and thereby minimizing the size of the executable program.

6.33.12 STATISTICS

Syntax:

-statistics

Specifies that short statistics shall be displayed about how many compilation units included in the
program and how many dependencies they have.

6.3.3.13 TARGET OPTIONS

Syntax:

-target options <rtng>

67

DACS Sun SPARC/SunOS and Sun SPARCISolads Native Ada Compiler System, User's Guide
Ada Linker

This option allows the user to specify target options which is passed to the native linker (Id)
without interretation. It therefore allows the user to specify other options than those mentioned
in this section.

$ al -taxzet "-L/usr/local/lib" P

- ink the subprogrmn P and substitutes the macto template %turgetoptions% by the sutr

This option allows any string to be pmpagated to the resulting command file via the macro
templt_ %TARGETOPTIONS%.

6-.3.14 TASK STACK SIZE

Syntax:

-task sacksze u -natural> (Default is 1024)

This option sets the default storage size N in 32 bit words for stacks of all tasks. This value can
be overridden with a repesentation clause.

Configurble Data

The Ada Linker generates the following data structure:

UCD$TaskStack_Size [N

6.3.11S TASKS

Syntax:

-taks <aturab> (default is 128)

This option specifies the maximum number of tasks allowed by the RTS. If specified, N must
be greater than or equal to zero.

68

DACS Su. PARC/SMOS and Sun SPARCOISIis Native Ada Compiler System, User's Guide
Ada Linker

5-flrl Dom

Fbr the z•cs option. the Unkter geuraes dte following configurable data:

UCD$max.Tasks NiI ii

UCD$TCBs N Task
Control
Blocks(TCBS)

a $a.-task* 3 p

Link the pougmn p, which has at most 3 tasks, including the main program.

6.3.3M6 TEMPLATE

Syntax:

-mpatep fle ý cle-nfme

This option specifies a template Mfle to use for the native link. The default is to use the file
named Ada teuphltt placed in the same directory as the Ada linker. See section 6.5 for an
explanatio of the template file and the flexible linker.

6.3.X37 NOTIMER

Syntax:

Thi COo disables timer setup in the executable program. Specifies that the Ada timer is not set
up. Ths cumes that delays waits forever, and that the option 41me slice will not function. This
option is useful when debugging pogams using dbx. The option is also useful when using the
-profle optim, becase the profile timer has a higher resolution than the Ada timer, which gives
a more detailed profiling information. The option can also be used to prevent interrupts at I/O
oPew-tins with blocdkig and other kernel cans.

6.33.18 TIME SUCE

Syntax:

-time dice dindnuumlunwber>

69

DACS Sun SpARQj~wnOW i Sun SpARCmSolami Native Ada Compiler System. User's Guide
Ada Linker

fTh time dlice option specifies tihe time slicing period for tasks.

If specified, it is a decimal namber of seconds represeuMin the default time slice to be used. If
not specfitedL thein will be no time dicing. The number must be in the rang Duratlon'Smali..2.0
aind must be gneawe tha or equal to the distance betweeni two succeussive calls to RTSS1MEIL

Time slicing only applies to tasks running at equal priorty. Because the RTS is a preemptive
priority scieduler, the highest priority task will always run before any lower priority task. Only
when two or more tasks are funing at the same priority is time slicing applied to each task.

'lu. slicing is not applicable unless tasking as being used. This means that the tasks option must
be set to at least 2 for time dlice to be efective.

Configirabl Data

Me Ada Linker generates, the following data:

UCD$TimeSlice absolute integer

0 ->No time slicing
0 O-The length ofa time slice

The umber of timer ticks (USD$Time..Slice) constituting a time-slice is computed as

&I. -U... 0. 125 p

-Specifies tasks of equal priority to be time sliced each eighth of a second.

6.3-119 TRACEBACK MODE

Syntax:

-tracebmck-mode (nevw I main I always) (default is main)

This option instructs the exception handler to produce a stack trace when a program terminates
because of an unhatided exception. Disabling traceback (with never) exclude traceback tables
from the executable program. If never is specified, the RTS variable UCD$TRACE will be set
to 0 and no trace will be produced if the program terminates with an unhandled exception. If
main is specified a trace will be produced if the main program terninates with an unhandled
exception. The RTS variable UCD$W.ACE will be set to 1. If the always is specified the RTS
variable UCD$TRACE will be set to 2 and a trac will be produced if either the main program
or a task terminate with an unhandled exception.

70

DACS Sun SPARCIuiOS and Sun SPARC1Sodais Native Ada Compiler System, User's Guide
Ada Linker

ConflIgable Data

UCD$Trace absolute integer

= 0 -> Tme disaled
=- -> Trace enabled for main program
=2-> Trace enabled for main program and tasks

6.3" USER LIBRARY

Syntax:

-uw-_lirby <dfle-name>

The user library option is intended for the specification of libraries or object files which should
contain the users own object code.

The user library option is also intended to specify libraries of routines referenced from the Ada
program via pragma INTERFACE.

6.33.21 WARNINGS

Syntax:

-warnings

This option specifies that warnings are displayed if detected by the linker, otherwise they are
suppressed. Warnings can be generated when conflicts between target program attributes and the
specified options are found and when a package has an inconsistent body.

6.4 Linker Output

This chapter describes the results of the linking process.

6.4.1 Executable File

Using the default options and the template provided with the system the linking process will result
in an executable file which is ready for execution. This file is named after the main program:

<malnjwram_name>

71

DACS Sun SPARC/SunOS and Sun SPARCISodaris Native Ada Compiler System, User's Guide
Ada Linker

6.4.2 Diagnostic Messages

Diagnostic messages from the Ada Linker are output to the current output file. The messages
ae output in the order they are generated by the linker.

The linker may issue two kinds of diagnostic messages: warnings and severe errors.

G.4.2.1 Warnings

A warning reports something which does not prevent a successful linking, but which might be an
error. A warning is issued if there is something wrong with the body unit of a program unit
which formally does not need a body unit, e.g. if the body unit is invalid or if there is no object
code container for the body unit.

6.4.2.2 Severe Errors

A severe error message reports an error which prevents a successful linking. Any inconsistency
detected by the linker will, for instance, cause a severe error message, e.g. if some required unit
does not exist in the library or if some time stamps do not agree.

A unit not marked as invalid in the program library may be reported as being invalid by the
linker if there is something wrong with the unit itself or with some of the units it depends on.

6.4.23 Return Codes

The linker set the return code to the following values:

Error code Description

0 Success, warnings
I Errors
2 Fatal Error

6.5 Flexible Linker

The DACS Ada Linker is referred to as a flexible linker because it has been designed to be very
flexible in the way it interfaces to target tools such as assemblers, librarians, and linkers. The
flexible linker can produce a target link in any manner that the user desires, i.e, the linker adapts
to each user's needs in a simple and straightforward manner.

72

S p

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in terms
of the maximum input-line length, which is the value for
SMAX IN LEN--also listed here. These values are expressed here as
Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 126 -- Value of V

$BIGID1 (1..V-1 => 'A', V => '1')

$BIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (l..V/2 => 'A') & '3' & (1..V-I-V/2 -> 'A')

$BIGID4 (l..V/2 => 'A') & '4' & (1..V-I-V/2 => 'A')

$BIGINTLIT (l..V-3 => '0') & "298"

$BIGREALLIT (l..V-5 => '0') & "690.0"

SBIGSTRING1 '""' & (l..V/2 => 'A') & 1""'

SBIGSTRING2 1'"' & (l..V-l-V/2 => 'A') & '1' & '""'

$BLANKS (l..V-20 => '

$MAXLENINTBASEDLITERAT
"2:" & (l..V-5 => '0') & "11:"

SMAXLENREALBASED LITERAL
"16:." & (l..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL ""'f & (l..V-2 => 'A') & '"-i'

A-1

The following table contains the values for the remaining
macro parameters.

Macro Parameter Macro Value

ACC SIZE 32

ALI - 4
COUNT LAST :2 147 483 647
DEFAULT MEN SIZE : 2048*1024-
DEFAULT STOR UNIT : 8
DEFAULT SYS NAME : DACS SPARC
DELTA_D C - : 2#1.O#E-31
ENTRYADDRESS : SYSTEM."-" (16#i0709180#)
ENTRY ADDRESS1 : SYSTEM."-" (16#10709188#)
ENTRY ADDRESS2 : SYSTEM."-" (16#10709190#)
FIELDLAST : 35
FILE TERMINATOR : I I
FIXED NAME : NOSUCHFIXEDTYPE
FLOAT NAME : NO SUCHFIXEDTYPE
FORMSTRING :
FORM_ STRING2

"CANNOT RESTRICT FILECAPACITY"
GREATER THANLURATION : 100000.0
GREATERTHANDURATIONBASE LAST : 200000.0
GREATERTHAN-FLOATBASELAST : 16#1.0#E+32
GREATER THANFLOATSAFELARGE : 16#5.FFFF_FO#E+31
GREATER THAN SHORTFLOATSAFELARGE: 16#5.FFFF_FO#E+31
HIGH PRIORITY : 31
ILLEGAL EXTERNAL FILENAME1 : /NODIRECTORY/FILENAME1
ILLEGAL EXTERNAL FILE NAME2 : /NODIRECTORY/FILENAME2
INAPPROPRIATE LINE LENGTH : -1
INAPPROPRIATE PAGELENGTH : -1
INCLUDE PRAGMAl

PRAGMA INCLUDE (I"A28006D1.ADA")
INCLUDEPRAGMA2

PRAGMA INCLUDE ("B28006El.ADA")
INTEGER FIRST : -2147483648
INTEGER LAST : 2147483647
INTEGERLAST PLUS 1 : 2147483648
INTERFACE LANGUAGE : AS
LESS THAN DURATION -75000.0
LESS THAN DURATION BASEFIRST : -131073.0
LINE TERMINATOR : '
LOW PRIORITY :0
MACHINE CODE STATEMENT : NULL;
MACHINE CODETYPE : NO SUCHTYPE
MANTISSA DOC : 31
MAX DIGITS : 15
MAXINT : 2147483647

A-2

MAX fINT PWUS_1 : 2147483648
MIIINTý : -2147483648
NAllE : NO SUCH TYPE AVAILABLE
NMAELIST : DA~CSSPA7RC-
NANESflCIFICATION1

/houe/uparcla/ada/test/proval id/work/X2 12 OA
hMNESPECIFICATION2

/houie/uparcla/ada/test/prevalid/work/X2 120B
NMAE SPECIFICATION3

/home/sparcla/ada/test/prevalid/work/X3 119A
NEG BASED INT : 16#FOOOOOOE#
NEW NEW SI1ZE : 2097152
NEWSTORUNIT : 8
NEW-SYS KANE : DACSSPARC
P&Giz TERmINATOR I I
RECORDDEFINITION NEW INTEGER
RECORDNMAE :MACHINEINSTRUCTION
TASK SIZE :32
TASKSTORAGESIZE :1024
TICK : 2#1.0#E-14
VARIABLEADDRESS .SYSTEM.'-"(16#1O7O9198#)

VARIABLE ADDRESS1 :SYSTEI4."-"(16#107091A0#)
VARIABLE ADDRESS2 :SYSTEM. "-" (16#107091AS#)
YOUR_-PRAGMA :INTERFACESPELLING

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-1

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -32_768 .. 32_767;

type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6
range -16#0.FFFFFF#E32 .. 16#0.FFFFFF#E32;

type LONG FLOAT is digits 15
range -16#0.FFFFFFFFFFFF_F8#E256 .. 16#0.FFFFFFFFFFFF_FS#E256;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

C-1

APP. F - IMPLEMENTATION DEPENDENT CHARACTERISTICS

This appendix describes the implementation dependem characteristics of DACS Sun SPARC/SunOS
and Sun SPARC/Solans as required in Appendix F of the Ada Reference Manual
(ANSI/ML-STD-1815A).

F.1 Inplementation Dependent Pragnms

This section describes all implementation defined pragmas.

F.1.I Pragma INTERFACESPELLING

This pragma allows an Ada program to call a non-Ada program whose name contains characters
that would be an invalid Ada subprogram identifier. This pragma must be used in conjunction
with pragma INTERFACE, i.e., pragma INTERFACE must be specified for the non-Ada
subprogram name prior to using pragma INTERFACESPELLING.

F.1.1.1 Formmt

The pragma has the format:

pragma INTERFACESPELLING (subprogram name, string literal);

where the subprogram name is that of one previously given in pragma INTERFACE and the
string literal is the exact spelling of the interfaced subprogram in its native language. This pragma
is only required when the subprogram name contains invalid characters for Ada identifiers.

F.1.1.2 Example

function ASSEMBLY MODULENAME return INTEGER;

pragma INTERFACE (AS, ASSEMBLYMODULENAME);
pragma INTERFACESPELLING (ASSEMBLY_MODULENAME,

"Illegal$AdaName");

F.12 Pragum EXTERNALNAME

This pragma allows an Ada program to export the name of an Ada subprogram so that it can be

169

DACS Sun SPARC/SMOS and Sun SPARC/Solas Native Ad& Compiler System, User's Guide
Dtpent emCdanracteristmcs

called fom a non-Ada component.

F.I.21 Format

MWe pragma has the format

pragma EXTERNALNAME (ada entity, string literal)

where ada entity hod be die name of:

" A permanent object. i.e. an object placed in the permanent pool of the compilation unit - such
objects oiginate in pecks specifications and bodies only.

"• A constant object, i.e. an object placed in die constant pool of the compilation unit - please
note that scalar comutmts embedded in the code. and composite constants are NOT always
placed in dfe constant pool, because the constant is not considered constant by the compiler.

"* A nbpgsm name, i.e. a name of a subprgram defined in this compilation unit - please
notice dat separate subprogram specifications cannot be used, the code for the subogram
MUST be pesent in the compilatio unit code.

Objects or subprograms that are local to subprograms or block camn have external names
associatd. The entity being made extemal ("public") MUST be defined in the compilat unit
itself. Attempts to name entities fnm other compilation units will be tejected with a warning.

The string literal literal is the external name associated the ada entity. The external name should
the uniuae. Specifyg identical spellings for different ada entities will generate errors at compile
and/or link time, and the responsibility for this is left to the user. Also the user should avoid
spelling similar to the spellings generated by the compiler, e.g. M_<unit-no>_<section-no> and
other internal identifications.

It is also the responsibility of the user to preserverestor register %g2 when/if returning to Ada.

When an entity in an object the value associated with the symbol will be die relocamble address
of the first byte assigned to the object.

F.L2.= Example
This example shows how to export the name of an Ada subpogram and an integer object to be

used in a C routine. The C routine is called from the Ada program.

The Ada program:

package ext is
var : integer :- 0;
pragma externalname(var, "_var_name");
procedure outer proc(a : integer);

pragma externalname (innerproc,"_inner_proc");

end;

170

9 0

DACS Son SPARC/SwOS and Son SPARCraolads Native Ad& Cmmpfler Sysme, Unr's Gude
bamon ~nDemiM Chmnsfcs

package body ext is
procedure inner proc (a : integer) is
begin

vat :- vat + a;
end inneryproc;

end;

with ext; use ext;
with report; use report;
procedure externtest is

procedure callinnerproc(a : integer);
pragma interface(c,call inner proc);

begin
test ("EXTERNTEST","");
vat :- 1;
callinnerjproc(3);
if vat /- 7 then

"failed("innerjproc not call properly");
nd if;
sult;

The C program:

extern inner_proc (;
extern int var name;
callinnerproc (in)
int in;
I

varname - vatname + in;
inner proc (3);)

F.2 Implunuation Dependmt Attributes

No unplemepataon dependent attibutes ame defined.

F.3 Packa SYSTEM

The padkag SYSTEM bi described in ARM 13.4.

package SYSTEM is

type ADDRESS is new INTEGER;
type NAME is (DACSSPARC);

SYSTEM AME : constant NAME : DACSSPARC;
STORAGE_UNIT : constant : 8;
MEMORY SIZE : constant : 2048 * 1024;
MIN INT : constant : -2 147 483 648;
MAX-INT : constant : 2_147_483_647;
MAX_-DIGITS : constant : 15
MAX_MANTISSA : constant : 31

171

* d

DACS Sun SPARC/SunOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Dependnt Characteristcs

FINE DELTA : constant :- 2#1.0#E-31;
TICK : constant : 2#1.0#E-14;

subtype PRIORITY is INTEGER range 1.. 31;
type INTERFACE_LANGUAGE is (C, AS); -- implementation dependent

Coopiler system dependent types:

subtype Integer_16 is short-integer;
subtype Natural_16 is Integer.16 range 0..Integer_16'last;
subtype Positive_16 is Integer 16 range 1..Integer_16'last;

subtype Integer_32 is integer;
subtype Natural_32 is Integer_32 range 0..Integer_32'1ast;
subtype Positive_32 is Integer_32 range 0..Integer_32'last;

end SYSTEM;

F.4 Rqemntaton Clauses

The representation clauses that ar accepted are described below. Note that representation
specifications can be given on derived types as well.

F.4.1 Length Clause

Four kinds of length clauses are accepted.

Size specifications:

The size attribute for a type T is accepted in the following cases:

- If T is a discrete type then the specified size must be greater than or equal to the number
of bits needed to represent a value of the type, and less than or equal to 32. Note that
when the number of bits needed to hold any value of the type is calculated, the range is
extended to include 0 if necessary, i.e. the range 3..4 cannot be represented in 1 bit, but
needs 3 bits.

If T is a fixed point type, then the specified size must be greater than or equal to the
smallest number of bits needed to hold any value of the fixed point type, and less than
32 bits. Note that the Reference Manual permits a representation, where the lower bound
and the upper bound is not representable in the type. Thus the type

type FIX is delta 1.0 range -1.0 .. 7.0;

is representable in 3 bits. As for discrete types, the number of bits needed for a fixed
point type is calculated using the range of the fixed point type possibly extended to
include 0.0.

- If T is a floating point type, an access type or a task type the specified size must be equal
to the number of bits used to represent values of the type per default (floating points: 32
or 64, access types : 32 bits and task types : 32 bits).

172

DACS Sun SPARCISunOS and Sun SPARCAoaris Native Ada Compiler System, User's Guide
Imlem tation Dependent Characteristics

- If T is a record type the specified size must be greater or equal to the minimal number
of bits used to represent values of the type per defaulL

- If T is an array type the size of the array must be static, i.e. known at compile time and
the specified size must be equal to the minimal munber of bits used to represent values
of the type per default.

The size given in the length clause will be used when allocating space for values of the type in
all contexts e.g. as pat of an array or record. For declared objects the size will be rounded to the
nemest number of bytes before the object is allocated.

Colectkm size spedfcations:

Using the STORAGE_SIZE attribute on an access type will set an upper limit on the total size
of objects allocated in the collection allocated for the access type. If further allocation is attempted,
the exception STORAGEERROR is raised. The specified storage size must be less than or equal
to INTEGER'LAST

Tak storage size

When the STORAGESIZE attribute is given on a task type, the task stack area will be of the
specified size. The specified storage size must be less than or equal to INTEGER'LAST.

Small spedfkations

Any value of the SMALL attribute less than the specified delta for the fixed point type can be
given.

F.4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range of
SHORT_ITEGER'FIRST .. SHORT_INTEGER'LAST. An enumeration representation clause may
be combined with a length clause. If an enumeration representation clause has been given for a
type the representational values are considered when the number of bits needed to hold any value
of the type is evaluated. Thus the type

type ENUM is (A',B,C);
for ENUM use (1,2,3);

needs 3 bits to represent any value of the type.

173

DACS Sun SPARC/SunOS and Sun SPARCISolaris Native Ada Compiler System, User's Guide
Implementation Dependent Characteristics

F.4.3 Record Representation Clauses

When component clauses are applied to a record type, the following should be noted:

- Components can start at any bit boundary. Placing e.g. non packed arrays on odd bit
boundaries will cause costly implicit conversion to be generated. however.

- All values of the component type must be representable within the specified number of
bits in the component clause.

- If the component type is either a discrete type or a fixed point type, then the component
is packed into the specified number of bits (see however the restriction in the paragraph
above).

- If the componen type is not one of the types specified in the paragraph above, the default
size calculated by the compiler must be given as the bit width, i.e. the component must
be specified as

component at N range X..X + componenttype'SIZE - 1

where N specifies the relative storage unit number (0,1...) from the beginning of the
record, and X is any bit number.

- The maximum bit width for components of describe or fixed point types is 32.

If the record type contains components which are not covered by a component clause, they are
allocated consecutively after the component with the highest offset specified by a component
clause. Holes created because of component clauses are not otherwise utilized by the compiler.

When the compiler determines the size of a record component the following is taken into account
in the specified order

a component clause
a length clause ('SIZE) on the component type
a possible pragma PACK on the record type
the default size of the component type

F.4.3.1 Alignment Clauses

Alignment clauses for records are supported with the following restrictions:

- The specified alignment boundary must be 1, 2, 4, 8, or 16.

- The specified alignment must not conflict with the alignment requirement for the record
components, i.e. an alignment boundary of 4 is not accepted if the record has a component
of an array type with size 100 bytes (such arrays should be aligned on a 16 byte
boundary).

174

DACS Sun SPARCJSuIOS and Sun SPARCJSolauis Native Ada Compiler System, User's Guide
Ilmentaion Dependent Characteristics

F-5 Names for Implementation Dependent Components

None defined by the compiler.

F.6 Addres Claue

Address dames are supported for scalar and for composite objects whose size can be determined
at compile time. Address clauses are not supported for subprograms, packages, tasks or task
entries.

F.7 Unchecked Conversion

Unchecked conversion is only allowed between objects of the same "size". However, if scalar
type has different sizes (packed and unpacked), unchecked conversion between such a type and
amnoher type is accepted if either the packed or the unpacked size fits the other type.

FAS Input/Outpit Packages

The implementation supports all requirements of the Ada language and the POSIX standard
described in document P1003.5 Draft 4.0/WGI5-N45. It is an effective interface to the
SunOS/Solaris file system, and in the case of text 1/0, it is also an effective interface to the
SunOS/Solans standard input, standard output, and standard error streams.

This section describes the functional aspects of the interface to the SunOS/Solaris file system,
including the methods of using the interface to take advantage of the file control facilitiesprovded.

The Ada input-output concept as defined in Chapter 14 of the ARM does not constitute a
complete functional specification of the input-output packages. Some aspects of the 1/0 system are
not described at all, with others intentionally left open for implementation. This section describes
those sections not covered in the ARM. Please notice that the POSIX standard puts restrictions
on some of the aspects not described in Chapter 14 of the ARM.

The SunOS/Solaris operating system considers all files to be sequences of bytes. Files can either
be accessed sequentially or randomly. Files are not structured into records, but an access routine
can treat a file as a sequence of records if it arnges the record level input-output

Note that for sequential or text files (Ada files not SunOS/Solaris external files) RESET on a file
in mode OUT_FILE will empty the file. Also, a sequential or text file opened as an OUTFILE
will be emptied.

175

DACS Sun SPARC/SunOS and Sun SPARCrSolaris Native Ada Compiler System, User's Guide
Imementaion Dependent Characteristics

FLl Exterual Files

An external file is either a SunOS/Solaris disk file, a SunOS/Solaris FIFO (named pipe), a
SunOS/Solris pipe, or any device defined in the SunOS/Solais directory. The use of devices such
a a tape drive or communication line may require special access pennissions or have restrictions.
If an inaprqxie operation is attempted on a device, the USE_ERROR exception is raised.

External files created within the SunOS/Solars file system shall exist after the termination of the
program that created it, and will be accessible from other Ada programs. However, pipes and
temporary files will not exist after program tenrination.

Creatim of a file with the same name as an existing external file will cause the existing file to

be overwritten.

Creation of files with mode IN_FILE will cause USEERROR to be raised.

The name parameter to the input-output routines must be a valid SunOS/Solaris file name. If the
name parameter is empty, then a temporary file is created in the /usrAmp directory. Temporary
files are automatically deleted when they am closed

F.3.2 File Management

This section provides useful information for performing file management functions within an Ada
program.

The only restrictions in performing Sequential and Direct 1/O are:

- The maximum size of an object of ELEMRETJYPE is 2_147_483_647 bits.

- If the size of an object of ELEMENTTYPE is variable, the maximum size must be
determinable at the point of instantiation from the value of the SIZE attribute.

The NAME parameter

The NAME parameter must be a valid SunOS/Solaris path name (unless it is the empty string).
If any directory in the path name is inaccessible, a USEERROR or a NAME_ERROR is raised.

The SunOS/Solaris names "stdin", "stdout", and "stderr" can be used with TEXT_IO.OPEN. No
physical opening of the external file is performed and the internal Ada file will be associated with
the already open external file. These names have no significance for other I/0 packages.

Temporary files (NAME = null string) are created using Impname(3) and are deleted when
CLOSED. Abnormal program termination may leave temporary files in existence. The name
firnction will return the full name of a temporary file when it exists.

176

DACS Sun SPARC/SunOS and Sun SPARCISolanis Native Ada Compiler System, User's Guide
Implementation Dependent Characteristics

The FORM parameter

The Form parameter, as described below, is applicable to DIRECTIO, SEQUENTIAL_10 and
TEXT_IO operations. The value of the Form parameter for Ada I/O shall be a character string.
The vahle of the character string shall be a series of fields separated by commas. Each field shall
consist of optional separators, followed by a field name identifier, followed by optional separators,
followed by "=>", followed by optional separators, followed by a field value, followed by optional
separators. The allowed values for the field names and the corresponding field values are
described below. All field names and field values are case-insensitive.

The following BNF describes the syntax of the FORM parameter

form ::- [ield (, field)*]

fields ::= rights I append I blocking I
terminaljinput I fifo I
posix filedescriptor

rights OWNER I GROUP I WORLD =>

access (,access-underscor}

access READ I WRITE I EXECUTE I NONE

access_underscor ::= _READ I _WRITE I _EXECUTE I _NONE

append APPEND => YES I NO

blocking BLOCKING => TASKS I PROGRAM

terminal-input TERMINALJNPUT => LINES I CHARACTERS

fifo ::=FIFO => YES I NO

posix filedescriptor ::= POSIX_FILE_DESCRIPTOR => 2

The FORM parameter is used to control the following:

File ownership:

Access rights to a file is controlled by the following field names "OWNER", "GROUP"
and "WORLD". The field values are "READ", "WRITE", "EXECUTE" and "NONE"
or any combination of the previously listed values separated by underscores. The access
rights field names are applicable to TEXTJO, DIRECT_1O and SEQUENTIALJO. The
default value is OWNER => READ_WRITE, GROUP => READWRITE and WORLD
=> READWRITE. The actual access rights on a created file will be the default value
subtracted the value of the environment variable umask.

177

DACS Sun SPARCA~MOS and Sun SPARC/Solaris Native Ada Compiler System, User's Guide
Implemmanon Dependent haractrisics

Exampl

To make a file readable and wuitable by the owner only, the Form parameter should look
somedt like this:

"Owner =>-eadwrite, World=> none, Group=>none"

If one or more of the field names are missing the default value is used. The permission
field is evaluated in left-to-right order. An ambiguity may arise with a Form parameter
of the following:

"Owner-->Read_ExecuteNone-Write..Read"

In this instance, using the left-to-right evaluation order, the "None" field will essentialiy
reset the permissions to none and this example would have the access rights WRITE and
READ.

- Appending to a file:

Appending to a file is achieved by using the field name "APPEND" and one of the two
field values "YES" or "NO". The default value is "NO". "Append" is allowed with
both TEXT_IO and SEQUENTIALIO. The effect of appending to a file is that all
output to that file is written to the end of the named external file. This field may only
be used with the "OPEN" operation, using the field name "APPEND" in connection with
a "CREATE" operation shall raise USEERROR. Furthermore, a USE_ERROR is raised
if the specified file is a terminal device or another device.

Example

To append to a file, one would write:

"Append => Yes"

- Blocking vs. ,on-blocking I/O:

The blocking field name is "Blocking" and the field values are "TASKS" and
"PROGRAM". The default value is "PROGRAM". "Blocking=>Tasks" causes the
calling task, but no others, to wait for the completion of an I/0 operation.
"Blocking-->program" causes the all tasks within the program to wait for the completion
of the I/O operation. The blocking mechanism is applicable to TEXTIO, DIRECT_1O
and SEQUENTIALJO. UNIX does not allow the support of "BLOCKING=>TASKS"
currently.

- How charaMcters are read from the keyboard:

The field name is "TERMINALINPUT" and the field value is either "LINES" or

178

DACS Sun SPARCiSunOS uvd Sun SPARCrSolars Native Ada Compiler System, User's Guide
IDependent Characteristics

"CHARACTERS". The effect of the field value "TerminaLinput => Characters" is that
characten are eMd in a noncumnical fashion with MinimumcPountFl- meaning one
charater at a time and Time:0.0 conesponding to that the read operation is not satisfied
until hdnun_Coum chacmers an received. If the field value "LINES" is used the
chaantrs are read one line at a time in canonical mode. The default value is Lines.
"TERM[NALNPUT has no effect If the specified Mfie is not already open or if the file
is not open on a terminal. It is permitted for the smne terminal device to be opened for
input In both modes as separate Ada file objects. In this case, no user input characters
shll be read frorm the input device without an explicit input operation on one of the file
object¶s. The 'ERMINALINPUT mechanism is only applicable to TEXTIO.

- Cration of FIFO fles:

The field name is "Pifo" and the field value is either "YES" or "NO". "FIFO => YES"
means that the file shall be a named FWFO file. The default value is "No".

For use with TEXT_WO, the "Fifo" field is only allowed with the Create operation. If
used in connection with an open operation an USE-ERROR is raised.

For SEQUENIIALIO, the FIF0 mechanism is applicable for both the Create and Open

In connection with SEQUENTIAL_10, an additional field name "ONDELAY" is used.
TIe field values allowed for "O_NDELAY" are "YES" and "NO". Default is "NO".
The "O.NDELAY" field name is provided to allow waiting or immediate return. If, for
example, the following form parameter is given:

"Flfo=>Yes, ONdelay=>Yes"

then waiting is performed until completion of the operation. The "ONdelay" field name
only has meaning in connection with the FIFO facility and is otherwise ignored.

- Access to Open POSIX files:

The field name is "POSXFile._Descriptor". The field value is the character string "2"
which denotes the stderr file. Any other field value will result in USEERROR being
raised. The Name parameter provides the value which will be returned by subsequent
usage of the Name function. The operation does not change the state of the file.
During the period that the Ada file is open, the result of any file operations on the file
descriptor are undefined. Note that this is a method to make stderr accessible from an
Ada program.

fle Aoces

The following guidelines should be observed when performing file I/O operations:

At a given instan, any number of files in an Ada program can be associated with
coresponding external files.

179

DACS Sun SPARCSunOS and Sun SPARQSoIaris Native Ada Compiler System, User's Guide
pianDepdent Characteristics

When sbaing files between programns, it is the responsibility of the proglammer to determine
the effects of sharing files.

The RESET and OPEN operations to files with mode OUTFILE will empty the contents of
the file in SEQUEMTIA_IJO and TXJIO.

Flies can be interchanged between SEQUENTIAL_IO and DIRECF_IO without any special
operations if the files are of the same object type.

F.3 Bufthring

The Ada 1/0 system provides buffering in addition to the buffering provided by SunOS/Solaris.
The Ada TEXT_IO packages will flush all output to the operating system under the following

I. The device is a terminal device and an end of line, end of page, or end of file has
occurred.

2. The device is a terminal device and the same Ada program makes an Ada TEXTIJO
input request or another file object representing the same device.

Please refer to Appendix E (Root Library Support) for the full specifications of all 1/0 packages.

F.9 Machine Code Insertions

Currently machine code insertions are not supported.

180

